A Personal Recollection of Software’s
Early Days (1960-1979): Part 1

Ernest E. (“Lee”) Keet
Vanguard Atlantic Ltd.

IEEE Annals of the History of Computing

The author, a participant in packaged software’s early days, worked
with IBM up through the System/360 launch and then with Turnkey
Systems, an early provider of packaged software. This article traces
the author’s background from graduate school through the Turnkey
Systems sale to National CSS in 1979 and subsequently to Dun &

Bradstreet.

This article is the first of two extracts from a
much longer document that may one day be
published as a book. My working title is
Confessions of a Serial Entrepreneur: Surviving the
Information Technology Revolution. 1 wrote this
initially for myself, my family, and friends who
were interested in anecdotes about my early
days in the software industry. Several friends
have encouraged me to make parts of it public,
especially Luanne Johnson! and Burt Grad, the
founders of the Software History Center.

My history with computing goes back to the
late 1950s. My trek toward both entrepreneur-
ship and technology began with a youth mis-
spent playing with explosives and electronics,
while simultaneously developing a string of
neighborhood minibusinesses that let me
indulge my taste for gadgets. I had the all-
American paper route, sold handmade items
door-to-door, ran a penny arcade for neighbor-
hood kids, collected and sold scrap paper and
discarded bottles, and did whatever else seemed
lucrative and achievable at the same time. I
went to Cornell at the ripe age of 16 to study
engineering, graduating with a combined BS
and MS in 1962.

The gurus of Cornell’s engineering comput-
ing venue in the early 1960s were Bill Maxwell
and Dick Conway. Bill was a teaching assistant
on his way to a professorship, and Dick was
already a full professor. Dick, well-known in
computing circles, later led the program at
Cornell to implement a version of MIT’s Project
MAC. Bill became my graduate advisor. The
fifth-year program included a thesis, and based
on the programming course I had taken the
prior spring, I decided that something with a
computing requirement might be fun.

A friend and fraternity brother, Pete Giles,
was pursuing a thesis on a theoretical approach

Published by the IEEE Computer Society

to solving a linear programming problem via
approximation. Over beers, Pete sold me on
taking over the implementation of his team’s
project because he was going to graduate six
months ahead of me. Maxwell did the rest of
the selling, and soon three of us fifth-year engi-
neers were, as a team, working furiously at
building a computer program to do matrix
inversions and other compute-intensive stuff
that would result in an optimum shop-floor
layout. Pete graduated in mid-1962, and I and
my two sidekicks completed the project by
working nearly every night and weekend at the
computing center on a Burroughs 220, the suc-
cessor to the 205 Datatron (both vacuum tube
machines). In fact, the 220 was possibly the last
commercial vacuum-tube machine ever built.

High-leve] languages were just getting their
start in those days. Fortran was one of the ear-
liest, developed starting in 1954 and first
released in 1957. Algol followed in 1958 with a
major update in 1960. Unlike Fortran, Algol
introduced recursion, indirect addressing, and
character manipulation, among other features.
Cornell had adopted it as the language for use
in its computer programming courses, as well
as Fortran, because it was a precise and useful
way for capturing algorithms.

Our biggest problem was that we were inex-
perienced programmers, and our Algol routine
had to invert a 40 x 40 matrix—10 seconds of
work today, but an all-night affair then. This
meant that we had little time to store interim
results (especially on the unreliable and slow
drum), so we tried to cram a six-hour runtime
into a six-hour window and frequently
despaired as the paper jammed on the 403 or
the program failed 10 minutes from completion
with no time remaining to get the traces and
dumps to study. Only a few years later, I would

1058-6180/04/$20.00 © 2004 IEEE

have known to segment the program and take
checkpoints, points from which you can restart
in case of failure. Had I known, I could have
used two nights productively instead of 20 that
ended in total frustration. But, somehow we got
it done, and our paper went on to win the Silent
Crane and Hoist Award for 1962 along with a
check for $25, which my new wife Nancy and |
needed desperately.

IBM, which I joined right after grad school,
was a great training ground that let me pick up
the entrepreneurial thread begun in my child-
hood. | had three distinct careers at IBM in five
short years: systems engineering, application
software development, and sales, all three of
which would prove invaluable for my next
stage of life. I loved IBM; they gave me a post-
graduate education in more ways than one.
They paid for an added MS (in operations
research from New York University) but more
importantly gave me the on-the-job-training |
needed to understand how things worked in
practice. I think I gave them almost as much as
they gave me. When [declared my interest in
leaving, they did almost anything they could
to keep me there, something I remember fond-
ly, as it let me think the bargain had been fair.

By 1967, I was ready to strike out on my
own. | could run reasonable-sized technical
projects well, had run a large sales territory, and
had acquired the sense of invincibility that
every IBMer had in those days. Tod Pontius,
another IBMer from the Bridgeport office, and I
decided to start out on our own when it was
clear that IBM couldn’t meet the demand for
software support and services generated by the
IBM System/360 launched in 1964. As part of
the early System/360 need-to-know team and
with a strong background in manufacturing
applications, I was certain that we could sell
ourselves profitably to businesses, especially
manufacturing companies, wanting to step
into the world of electronic data processing.

Turnkey Systems: Origins

Turnkey Systems Inc. (TSI) was founded in
April 1967 as a contract programming firm spe-
cializing in getting the still-new IBM
System/360s working productively for our cus-
tomers. Our original goal was custom develop-
ment. In our view, Applied Data Research
(founded in 1959, with a first product in 1965),
Informatics (founded in 1962), and the hand-
ful of others already in the products market
were true pioneers, but we were not yet con-
vinced that there was a large market for pur-
chased software. In 1967, most software was
still distributed for free by the hardware manu-

We learned that two guys
selling on their own was a lot
different than selling for
IBM. The concept was
attractive, but day after day
passed without a sale.

facturers or shared bhetween the authors
through SHARE, GUIDE, and other user groups.

Tod and [started the business with
$15,000—3%7,500 each. We had no customers
or prospects, just very naive hopes. We rented
an office, hired a secretary, and set out to sell
our skills. Months went by, and we learned that
two guys selling on their own was a lot differ-
ent than selling for IBM. The concept was
attractive, but day after day passed while we ate
our seed capital without a sale.

At IBM there was always someone to take
care of the incidentals. Secretaries took your
dictated notes and returned near-perfect letters.
A guy from Facilities made sure the office was
well stocked with supplies. You did your job,
and everyone else did his or hers. Perfect. I
learned that this idyllic world did not extend
to most businesses, certainly not a business
with two guys and one Girl Friday. I arrived at
work one morning and was told that there was
no toilet paper in the ladies’ room. After I
almost said, “call Facilities,” I drove to a store
and bought the paper myself.

At long last, we had our first customer:
Jenkins Valve. They had a primitive manufac-
turing control system, using card images on
tape. They had manual order processing, no
automated production planning, and no link
between their manufacturing and financial sys-
tems. Their chief financial officer (CFO) had
started an ambitious project to bring them into
the 20th century and hired a consulting firm to
design modern systems, and we asked to bid on
the implementation work. Tod and I worked
day and night putting together a bid and spec-
ifications.

On the day before the bids were due, Tod,
our secretary, and [agreed to work until every-
thing was finished, which was a massive
amount of typing and document assembly.
Around 3 a.m. on the day of our interview, our
secretary quit. (I can’t understand why—we

October-December 2004

47

48

Recollection of Software’s Early Days (1960-1979)

had let her sleep at least twice that week.) At 8
a.m., [sent Tod ahead with the executive sum-
mary and a foil presentation while I did the
proposal’s final typing and assembly. Neither
Tod nor I had slept or changed our clothes in
two days. Just before noon I shaved in the
office bathroom and rushed to Bridgeport with
the final proposal. The meeting was still in ses-
sion, and we got our message and bid in with
some semblance of professionalism, albeit
delivered, seemingly, by two Bowery bums. We
won the business.

Some of what we did for Jenkins was revo-
lutionary for the time. Orders would come in
via teletype, with no fixed formatting. A pro-
gram 1 designed and wrote had to parse the
incoming character stream, interpret it, and put
out fixed-format records for the programs that
Tod was designing. This turned out to be a
generic and challenging task, because we could
only tell what was coming next and how to for-
mat it by interpreting the character stream as it
arrived. Much later this problem would create
a whole subindustry, especially with the advent
of electronic data interchange standards.? At
the time, I had to invent mechanisms to do on-
the-fly context analysis and reformatting. Our
access to the Jenkins computer was nights only,
so we worked nights programming and testing
and days meeting with the customer or trying
to develop other business. The project lasted
almost a year, and by early 1968 we had
demonstrated our skills and had sold a few
more small jobs. Business was looking up.

As we added people, our business practices
became more important. We wanted a family-
like culture, with everyone deeply involved in
the business success: families as well as employ-
ees. We created a stock option and purchase
program that included every employee—an
innovation at that time—along with an artifi-
cial market that let employees acquire stock,
trade it among themselves, or in certain condi-
tions sell it back to the company. Later, when
away-from-home travel was the rule for nearly
all employees, we created a Family Travel
Benefit (FTB) that put $10 in a pot for every
night spent on business travel. These funds
could only be spent to take along a partner or
child during some future business trip, and
were duly noted on expense reports.’
Employees would squirrel away these FTB cred-
its and look forward to tacking on a weekend
in Orlando or San Francisco. Consequently,
travel became in part a benefit, not a burden,
especially for the house-bound spouse, and we
spent very little extra for a huge payback.

One of our early customers was Burndy, a

IEEE Annals of the History of Computing

manufacturer of electrical connectors. Jerry
Kaufman, their vice president of data process-
ing, hired us to develop an order entry system
for their new System/360 Model 50, using 2260
display terminals. The 2260 was the first
“online” interactive terminal for the
Systemn/360, and Jerry thought it could be used
to replace keypunches, eliminating errors and
delay. Jerry was a very smart guy, impetuous,
and a martinet, but a warm human being.?

In the late 1960s (from the introduction of
the System/360 in April 1967 till around 1970),
the software to support online transaction pro-
cessing—that is, the systems software between
the application program and the hardware—did
not exist. Time-sharing systems and special oper-
ating environments had been developed by IBM
and others, but there was no 1BM solution for
running one interactive program to serve multi-
ple terminal users. Time-sharing is a different
solution to the problem, and an inelegant one at
that. If hundreds of users are running the same
program in separate time “slices,” the overhead
is enormous compared to letting one resident
program serve the multiple users while keeping
(only) their data and flow controls separate. Just
interacting with the terminals within the com-
mercial operating systems of the day was a chore.

IBM did distribute a primitive control routine
that let application programs (written in assem-
bly language, not high-level languages used by
most businesses) communicate with the 2260
display terminal, sense an incoming message,
and transfer outbound messages. Further, to
make a terminal display, a message required
detailed instructions that told the terminal how
to format the text (color graphics were still off
in the future) and precisely how to send it.

My team of developers at Burndy, led by
Kathy Emerson, were application people, not
systems programmers, so there was no real
choice except to develop our own “middle-
ware” to let high-level programs interface to
the IBM 2260 terminals. To do this, we built a
shell in Cobol that other Cobol applications
could invoke when they needed terminal serv-
ices—for example, to send a message to a ter-
minal in a format acceptable to that device
(versus some other type of device) without
knowing the device protocols or operating sys-
tem interface. The interface mechanism was
straightforward: First, the programmer filled
out a table with the name of each field in the
message and its display characteristics (bold,
flashing, protected, underscored, and so on).®
Then the programmer “PERFORMed” a para-
graph of code that we supplied that made the
actual external call and returned to the next

instruction on completion. Everything else was
done externally, in our shell or by the operat-
ing system resources that our shell invoked.

Jerry was delighted, the application was a
roaring success with its users, and we had
implemented one of the first online application
systems in the country. Our reputation for skill
at building complex systems grew, but in fact
the shell and standardized interfaces we had
built at Burndy let us hire garden-variety Cobol
programmers and set them to work writing
complex online applications. What's more,
Jerry saw that he could use our shell to develop
other online applications, and we worked out
a license so he could do just that.

Turnkey's first ‘package’

It was becoming obvious to me that we
should try setting up a software products busi-
ness to see if we could learn how to resell a pro-
gram. By this time we were convinced that
there was a market for software products if
properly packaged and supported. Larry
Welke's International Computer Programs cat-
alog in 1969 started to list packaged software
along with user-contributed software.®
Although packaged software was less than 10
percent of the listed offerings, it was growing
rapidly. (In his ICP catalog summary, Larry says
that by 1973 it was up to 49 percent). We
thought we saw a trend, so we agreed to pack-
age what we had built at Burndy.

In 1969 we finished our product, which we
named Graphics. Like the project work at
Burndy, it was an OS-only, 2260-only support
package. It let programmers write Cobol pro-
grams that could issue CALL statements to han-
dle all the communications with the display
terminal. It let an ordinary Cobol programmer
do programming that would have been impos-
sible without deeper system skills. Without
Graphics, it all had to be done in assembly lan-
guage, and programmers had to know how to
format character strings to send to the device.

Bob Bouton, who had joined Turnkey as
vice president of sales and marketing (but who
in truth had no one working for him), and I set
out to sell this product to anyone who
answered a tiny ad we placed in Computerworld.

From a business standpoint, Graphics was a
disaster. We sold about four in 1969, and in the
process discovered that we had addressed only
some of the technical and marketplace issues. A
software package had to support multiple oper-
ating systems (for IBM systems at the time, this
meant OS and DOS). It had to have scalability,
which meant multitasking capability. It had to
support multiple programming languages, ter-

minals, and environments. It had to handle the
exclusive control of records, avoiding the pos-
sibility that I could read it, you could change it,
then I could overwrite your change. We had
built a prototype, not a product.

Multitasking versus time-sharing

The System/360 hardware and operating
systems had introduced the idea of multitask-
ing to IBM customers, allowing one program to
run while another was waiting for a slow-play-
ing event to finish.” Multitasking differs from
time-sharing, in which numerous different
“virtual machines” are swapped in and out of
the active memory on a time-sliced basis, giv-
ing each user his or her “own” machine for a
few milliseconds. With multitasking, several
programs are operating at once, each one in its
own protected space, but the interrupt system
allows control to pass to a program that is ready
to process and then return to the original pro-
gram after a slow-moving external event fin-
ishes, such as reading a disk record.

However, within a single application pro-
gram running in its own protected space, there
was no way to make this switching happen. To
write a single program that would allow multi-
ple terminals to do order processing—and
achieve multitasking—required that each ter-
minal have its own copy of the program run-
ning separately. This was clearly unacceptable
for more than a few simultaneous users. Even
if it had been acceptable, there would have
been no way to prevent the simultaneous-
update problem, that is, A reads a specific
record, then B reads that same record, then A
updates the record, and finally B updates i,
wiping out what A had done. Clearly, some
level of control was required within the parti-
tion that was running the application.

Pseudoconversationality

To solve this problem, we invented some-
thing that subsequently became known as
pseudoconversationality, which is not really
multitasking. Pseudoconversationality made
our shell or “telecommunications control pro-
gram” look to the operating system like a sin-
gle-thread batch program, but a single
application that could internally host multiple
terminal threads. For example, within our shell,
which occupied only one address space, many
terminal operators could use the same pro-
gram, each entering or retrieving their own
data and maintaining their own flow control.
When one of these users, or threads, wanted a
time-consuming system resource, like data
from an external device, the control program

October-December 2004

49

50

Recollection of Software’s Early Days (1960-1979)

In January 1970, we
launched Task/Master, our
first true software package
and, to my knowledge, the

first commercial
telecommunications
monitor.

would issue the request and remember which
thread had asked for the service.

At that point, the operating system took
over, allowing other tasks to operate while the
service was being performed. On return of con-
trol to our partition, the thread that made the
request would be allowed to execute to com-
pletion and then (and only then) would trans-
fer control to any other thread that was ready
to run, without the return of control to the
operating system. It was an ingenious but sim-
ple piece of technology. It let one program man-
age many terminals and kept the application
from holding up the whole system.
Unfortunately, it did not prevent one terminal
from holding up another terminal, because
when any one of these pseudothreads demand-
ed an external service, the operating system
took over and passed control to an unrelated
application in another address space. This
turned out to be a problem requiring a clever
solution: finding a mechanism to let many
users thread through a single application with-
out control being relinquished to the operating
system until there was nothing more to process.

Four horsemen

When we first set up Turnkey’s software
products division in 1969, there were four of us
who did everything—design, programming,
documentation, testing, packaging, sales, and
installations.® T had hired well to staff this new
division, bringing on three young guys with
great technical instincts if not honed skills. By
far the finest programmer 1 ever met was Steve
Ward, an early recruit. I then hired Dennis
Sisco, just out of the army, giving him his first
real job after college. Joe Farrelly became the
fourth horseman, the solid, “hey guys—not so
fast,” anchor for the team.

Steve came on board with no Cobol knowl-

IEEE Annals of the History of Computing

edge. On his first day on the job, I asked him to
construct a source-code generator that would
let us distribute unique (to customer specifica-
tion) source code from a master “deck” of
Cobol code. Worse, 1 asked him to write this
program in Cobol, that is, Cobol generating
Cobol. This was on a Thursday, and I gave Steve
all of our Cobol manuals along with a self-
study program. I asked when he thought he
could be ready to start, and he said, “I'll try to
have something to you by Monday.” 1 said
“What?!” He said, “I think I can at least get you
a working prototype by Monday.” Sure enough,
on Monday Steve gave us a finished product
that with almost no revisions became our
method of custom distribution for four prod-
ucts over the next decade.

Steve illustrated an oft-repeated truth, that
programming is even more of an art than it is
a science. Programmers should be educated,
and trained, but even educated and trained
programmers (like me) can be average at best.
Donald Knuth of Stanford University, the
author of the seminal work The Art of Computer
Programming, estimates that only one out of 50
college undergraduates can become truly good
programmers. Steve was one out of thousands.

Dennis was almost as unusually creative.
Somehow he understood system architectures
without having ever studied system architec-
tures. A lot of the elegance of the mechanisms
in Task/Master, our major product, came from
his fertile brain.

Joe was a different sort entirely, but without
him we would not have made it. He knew when
we’d bought our own hype, had “overdosed”
on lack of sleep, and when a task wasn't worth
the effort. Joe worked as hard—maybe harder—
than any of us, and he kept us sane.

Our team’s mantra became “promise, then
build.” We saw that what we were selling to
Company A led to enhancements that
Company A needed but that could also induce
a sale at Company B. We were always running
to meet commitments. With the optimism of
youth, we were always selling the system with a
few more features than it actually had and then
rushing to upgrade it in time to make the deliv-
ery. We sometimes got hoisted by our own
“vaporware” and had to fight to keep up, but
the product steadily got better. I don’t think we
ever disappointed a customer, and we never
announced anything that we didn’t deliver.

Launch of Task/Master

In January 1970, we launched Task/Master,
our first true software package and, to my
knowledge, the first commercial telecommuni-

cations monitor. We started to sell the product
nationally, but before the end of 1972 we had
signed up several distributors in Europe. By
1974, we were getting a third of our sales in
software products from outside the US.

American Tobacco and multitasking

We sold one of the early versions of
Task/Master to American Tobacco (later to
become American Brands). Although initially we
had announced Task/Master as a multitasking
system, we were actually still using pseudocon-
versationality. As noted, with pseudoconversa-
tionality there was no overlap of 1/O requests
from various threads sharing one online appli-
cation. True multitasking would have let the var-
ious terminal and database actions overlap.
Pseudoconversationality was fine for American
Tobacco’s purposes because true multitasking
isn’t necessary unless a site is running many
simultaneous transactions per second, and they
weren't even close.

Nonetheless, one day their data processing
manager called and said, “We did a test and it’s
not truly multitasking.” 1 said, “Oh, didn’t you
get the service bulletin about that?” And he
said, “No, I didn’t.” So I created and sent off a
backdated technical memo with a bulletin
number suggesting that it was one of many in a
series, far from the first (which it actually was).
It said multitasking, which had been disabled
in the current release because of a serious
design flaw, would be repaired in the next
release of the product. To deliver the multi-
tasking, a crew of us immediately went to
Oxford, Connecticut, where we rented com-
puter time from Uniroyal, and spent long
weeks developing the first multitasking system
for terminal management. As soon as it was
done, we raced it over to American Tobacco,
and later sold it to others.

The fact that we programmed multitasking
in Cobol still amazes and amuses people in the
know. Cobol is not an especially efficient lan-
guage—it generates many more machine-level
instructions than would be the case by a pro-
grammer writing at a lower level. To use it for
an operating-system-like control program was
either foolhardy or brilliant: foolhardy if the
performance was inadequate; brilliant if the
performance was acceptable, because it created
a truly portable product that could be cus-
tomized to the customer’s needs at the source
level. In retrospect, after much fine tuning of
its performance, it was a brilliant success.”

Terminal independence
In addition to true multitasking, we added

all of the tools needed to make it easy for Cobol
programmers to write online applications
entirely in Cobol. Among its other features was
something we called terminal independence.
Terminal independence was a notational
means of specifying what we wanted the dis-
play to look like, a predecessor to the later
markup languages like HTML and XML. The
programmer provided a table of attributes and
our device-specific terminal independent mod-
ules (or TIMs) inserted the correct control char-
acters so that the image on one device looked
the same as on another device. Based on each
terminal’s address, Task/Master knew which
TIM to invoke to translate each message. Our
growing library of TIMs was one of the strong
selling points of Task/Master.

IBM unbundling

IBM’s June 1969 unbundling announce-
ment did not create the software products
industry—companies like Informatics and
Applied Data Research had been in business for
years!®—but it did accelerate its growth.
Unbundling forced customers to pay for soft-
ware, and in that situation a customer’s natu-
ral reaction is to shop around. My first reaction
to the unbundling announcement was that it
would create even bigger opportunities for cus-
tom contract programming and, later, for sys-
tems integration services, because IBM had also
announced that all engineering services would
be charged on an hourly basis. Of course, [was
right but missed the bigger implications, which
came to me only with hindsight—that is, we
finally had a truly competitive market for soft-
ware. The customer had to start justifying
expenditures for software, IBM’s as well as ours.

All of our customers were IBM users. IBM at
first ignored little software companies like us.
But after unbundling, they began to see us as a
threat to revenues and to “account control,”
especially in the database and communications
software areas. As a result, they poured money
into these products, trying to ensure a total
monopoly. In retrospect, they clearly succeed-
ed. Along the way, all that the independents
wanted was, first, more information on inter-
faces so we could keep our products current and
competitive and, second, less use of Fear-
Uncertainty-and-Doubt (FUD) by their sales
folks. IBM’s tools people had a real inside edge
in knowing what new tools would be available
in its operating and near-operating systems—all
we asked was that they create a Chinese Wall
and pass those goodies to the outside world at
the same time they passed them over the wall.

If this sounds familiar in the Microsoft con-

October-December 2004

51

52

Recollection of Software’s Early Days (1960-1979)

text, it is. FUD was more complex. IBM’s sales
force could allude to new products without any
documentation or specs, new products that
were of course better than the competition, and
their dominance would cause many to simply
do nothing. As was often said at the time
(here’s the fear factor), you would never lose
your job if you bought from IBM. Fortunately,
many IBM customers saw value in both our
products and in not being totally dependent on
IBM. Although this was a minority of compa-
nies, it was enough to build a business.

CFO approvals and the changes unbundling
brought

Even when we first started selling software
in the early 1970s, to get a sale we would typi-
cally need the approval of the company’s
CFO—and sometimes that of the president—
simply because buying software was so unusu-
al. Common questions were, “What is it we're
buying? A software package? What is that?
Why can’t we just do it ourselves?”

Before unbundling, the software and hard-
ware decisions were generally made together.
Once IBM started pricing software, the CFO
didn’t want to see every transaction, because
individually they were relatively small, but sys-
tem purchases still required high-level
approvals. Independent software decisions,
however, changed that pattern, as $15,000 or
$20,000 purchase decisions for software would
not typically rise to the corporate level. As a
result, one of the price constraints that we
became very sensitive to was the level in the
average corporation at which we had to go to
the board of directors, CFO, or president for
purchase authority.

During the first five years we sold products,
we believed this number was $25,000 or less.
John Maguire at Software Ag of North America
changed all that when he announced that
Adabas—a database management system
(DBMS)—was going to be priced in North
America at more than $100,000. We all gasped,
and some laughed, but John proved us all
wrong and can be credited with helping to
make software product sales a profitable busi-
ness. He was willing to let CEOs and corporate
boards debate a purchase that he claimed was
“strategic” and which they slowly came to see
as being part of the lifeblood of their business-
es. Indirectly, this led to the elevation of the
lowly data processing manager’s position to the
current role of chief information officer and to
the re-delegation of major technology purchase
decisions to this new, better-educated, and far
more powerful executive. Everybody won.

IEEE Annals of the History of Computing

Customer Information Control System

We sold Task/Master in competition with the
other independents and with, most important-
ly, IBM. IBM had adopted the Customer
Information Control System (CICS), first devel-
oped by IBM and Commonwealth Edison in
Chicago as a Type III program (meaning that
the program was contributed by a customer or
IBM support person), as its anointed communi-
cations monitor. IBM slowly improved it over
the years, making it more efficient and adding
a usable Cobol interface, but at the time of
unbundling it was a terrible product. Despite
IBM'’s continuing and huge investment, CICS
remained an inferior product for its first decade
of existence, and it never became an easy-to-use
tool. Both systems and application program-
mers struggled with it, and it used lots of hard-
ware resources. As it turned out, this was all
irrelevant, because—having a total monopoly—
IBM now has 499 of the Fortune 500 as CICS
users and has sold more than 30,000 copies.

Task/Master versus CICS

During its lifetime, Task/Master was a much
better decision for the customer. It cost less,
worked on all IBM platforms, was distributed
in source code,'! offered terminal independ-
ence, let programmers work quickly in high-
level languages, and required far fewer machine
resources. However, IBM was Big Blue, and
many corporate decisions were made in IBM’s
favor by default. We advertised in the trade
journals and in the ICP Quarterly, with a simple
ad that simply said “Before you buy CICS check
out Task/Master.” In response to queries, we
sent out a checklist of yes/no comparisons of
the features and advantages of each package.
We had, of course, developed it ourselves (with
a high degree of bias) and then had the
immense good fortune to have a lazy journal-
ist adopt it for an article without checking for
accuracy or completeness or asking IBM for a
rebuttal. With this “independent” analysis of
the two products, we did battle with Goliath.
Our willingness to do anything to get the sale,
from free trials to money-back guarantees,
combined with endless hours of travel and late
nights, made us the name to beat in “inde-
pendent” software to run a company’s network.

In a fair fight, the only long-term differen-
tiator is quality. With enough quality of design,
production, or service, someone can charge pre-
mium prices and still win against lower-priced
competition—but only if the other guy isn’t
monopolizing power or plays fair. A player with
a monopoly who doesn’t play fair always wins,
which is why I own Microsoft stock.

IBM’s DL/1 ploy

In 1978, 1BM finally caught and defeated us,
but not by playing fairly. IBM announced that
DL/1, its database system for DOS, would in
the future support online access by using the
master scheduler from CICS. This meant that
if you wanted to use DL/1, you had to buy
CICS. Doom.

I'm no lawyer, but that seems like an incon-
testable violation of the tie-in sale prohibitions
of the Sherman Act. It destroyed our market
along with that of all our competitors. Even if
the customer didn’t want to buy DL/1, he saw
the handwriting on the wall. IBM was making
CICS its strategic product for online application
development. IBM had about 40 percent or 50
percent of the telecommunications monitor
market, and the rest of the market was distrib-
uted among several companies. We were num-
ber two. We had sold about $25 million worth of
Task/Master at that point. IBM’s action did not
affect our competitors so dramatically, because
they sold their telecommunications monitors
mostly to customers for their own DBMSs.

DBMS vendors

Turnkey Systems never had a DBMS, which
was one of the earliest general-purpose software
applications. Informatics brought out the Mark
IV system in the mid-1960s. It wasn't strictly a
DBMS but rather an integrated data storage,
retrieval, and reporting system, but it proved
that standard systems could be sold on a repet-
itive basis. Tom Nies founded Cincom Systems
in 1968 and in 1969 introduced a DBMS he
named “Total.” Software Ag, a German compa-
ny, had launched Adabas first in Europe (also
in 1969) and then in the US through a sub-
sidiary run by John Maguire. John Cullinane
took technology originally developed for
General Electric and in 1973 generalized it into
Cullinet Systems’ Integrated Database
Management System (IDMS) product. Soon
after, Marty Goetz!? introduced Applied Data
Research’s Datacomm product.

During the early and mid-1970s,
Datacomm, Total, Adabas, and IDMS compet-
ed fiercely with [BM’s larger information man-
agement system (IMS) and smaller DL/1
offerings, with great success. Each company
added a telecommunications monitor to com-
plement their DBMS, but Task/Master remained
the only product unaffiliated with a DBMS,
something we made a huge point of in our
marketing. We were the only player in the mar-
ket that let companies choose the DBMS and
telecommunications monitor separately, which
meant that we got a disproportionate share of

As a result of our Hobson's
choice—sue IBM or watch
our profitable Task/Master
business become a money-
losing cost sump—we chose
to exit the marketplace.

the IBM shops that thought CICS was a piece
of junk but didn't want to commit their data to
a non-IBM supplier’s product. Hence, our dis-
proportionate share of the market with IBM
DBMSs sealed our doom when IBM linked its
two products.

Moving on

As a result of our Hobson'’s choice—sue IBM
or gradually watch our profitable Task/Master
business become a money-losing cost sump—
we chose a third path. We had a closed-door
meeting with our board and decided that we
were going to exit the Task/Master marketplace
as gracefully as we could without hurting our
customers. This was not altruistic: We had
many “leases” and a very nice maintenance
business from those who had paid for a one-
time license. We made an announcement that
we would service customers forever if they
stayed on maintenance or under lease, and that
we would keep the system current with all oper-
ating system upgrades. But in 1978 it essential-
ly became a defunct product.'? Although I still
view IBM as an ethical company that simply
made a bad mistake, Task/Master died a prema-
ture and unnecessary death.

My advice to anyone in a similar position:
Anticipate your demise. Identify potential
competitors who will see your success and
respond with better marketing, newer prod-
ucts, more coverage, illegal actions, or by cre-
ating enough FUD to stop you cold. Be sure to
look in adjoining markets, not just the one you
propose to capture.

Finances

Finding capital to finance the growth of the
industry was one of the common problems that
we all shared. No one would invest in software,
and no bank would lend to a software compa-
ny, other than perhaps to factor its receivables.
Bankers could not fathom a business with no

October-December 2004

53

54

Recollection of Software’s Early Days (1960-1979)

bricks, mortar, or inventory, and the venture
community—then in a nascent state as far as
technology was concerned—could not see
through the risk of the intellectual assets all
walking out of the building every day.

Cash was our constant worry. We strung out
(but never stiffed) our suppliers, hounded cus-
tomers for receivables from the moment our
invoice was warm, sometimes went without
pay, and frequently made payroll by granting
personal loans to the company. For the first
three years of Turnkey Systems’ existence, nei-
ther Tod nor I took a regular salary, living off
what little savings we had. Even when the soft-
ware products side of our business was doing
well, my pay never rose much above the levels
I'had earned many years before at IBM.

Financing ‘leases’ for software

To attack the cash-flow problem, I created
renewable “leases” for software, an innovative
solution passed on to many other companies.
Our prospects wanted a monthly use fee that
would let them get below the purchasing
authority limits. Although some customers
really wanted a month-to-month low obliga-
tion lease, most were willing to sign up for a
longer period after accepting the system. The
key was winning the customers' confidence
that the system was functional and stable.
Once they were convinced of that, after an ini-
tial trial period, they could see the inevitabili-
ty of the system becoming integral to their
operations, so a long-term lease was not unac-
ceptable. So we adopted pricing policies where
Task/Master customers could either perpetual-
ly license the product or lease it, with the
incentives biased toward leasing. In reality,
these were monthly licenses to use the software
for a fixed period of time, and at the end of the
lease we had built in the customer’s choices
(renew, extend, or buy a perpetual license!?), all
of which resulted in high-margin revenues. We
did this first in 1970, and I am almost positive
that we were the first in the industry to do so.
However, because we needed cash, writing the
license was only half of the solution.

I arranged a series of bank lines that would
lend against these multiyear leases. We per-
suaded the customer that we were financing
their license and that therefore our service obli-
gations should be separated from the lease. We
achieved this by giving them a separate service
agreement. They agreed to pay us the monthly
fee for three years, with the small type making
this a requirement regardless of our ability to
service them. We covered the obvious sales
resistance with money-back guarantees during

IEEE Annals of the History of Computing

the first few months of use, but thereafter we
could borrow against the balance of what are
called “hell or high-water” leases.

Software pricing strategies

One other advantage to this technique was
the flexibility it gave us in pricing our software.
Because maintenance for perpetually licensed
software was typically 15 percent of the then-
current purchase price, and because we had
monthly licenses whose fixed pricing ended
after several years, we would always raise the
price aggressively each year. This let us do “buy
quick; the price is going up” selling at year end
and also enjoy higher maintenance and renew-
al fees. Of course, we would then offer a “spe-
cial” discount to new buyers, which let them
think they had a bargain for a while but also
minimized complaints at renewal time.

Another rule learned from experience was to
set prices high, then raise them—then, and
only if unavoidable, to use pricing tactics to get
back into a reasonable competitive zone. We let
customers know that our products or services
were worth the extra money but that we
offered one-time new account incentives,
money-back guarantees, financing over time,
or other means that made the purchase more
affordable to new customers.

One of our first customers, Atlantic National
Bank, signed up for three successive three-year
leases and then finally bought a license for the
product, ultimately paying us more than
$70,000 for a product that they could have pur-
chased at the outset for $15,000. And they’re a
bank! As I will explain, when Turnkey Systems
changed hands years later, the lease portfolio
was its most valuable asset.

The leases solved a big marketing problem
and let us get sales at the expense of our com-
petitors, but even with the ability to finance 80
percent of the lease we had to produce up-front
cash for every sale. Our sale price was, for sake
of illustration, $25,000.15 Qur lease price was
$600 per month for 36 months. Of the $21,600
face value, we could borrow $17,280. But this
borrowing occurred typically after a three-
month trial period during which the customer
could cancel. This meant that compared to an
outright sale we had to self-finance $25,000—
$17,280 + 3 x $600, or $9,520. This was a huge
amount for us, so although we loved the resid-
uals in a lease, we could hardly afford to write
one. Sometimes the choice was to lose the sale,
however, so we went hungry and built a lease
portfolio that eventually was worth eight figures
and became the main asset of the company.

The lesson | learned, which cannot be

stressed enough, was to be a gatherer, not a
hunter. One-time sales are thrilling, but you
must make more and more to keep your rev-
enues rising. Financing should be available for
solid longer-term customer commitments, and
on the day that your recurring revenue stream
exceeds your fixed costs you will make this rule
your mantra.

Cash shortages and the pressure to sell out

Cash shortages persisted. All of our capital
went into the lease portfolio or back into new
products or market expansion. Much later, per-
haps in 1977, when the venture market was
turning toward technology companies, I asked
Russell Carlson, who was running Citicorp’s
venture operations, to address my manage-
ment team to describe the future funding
opportunities we might see. In the Q&A ses-
sion, Russ was asked what advice he would give
a company like ours, growing at a reasonable
pace but always cash constrained. “Sell,” he
said. Everyone, including me, was shocked by
his answer, thinking of ourselves as survivors—
but sell was eventually what we did.

We bootstrapped Turnkey Systems for 11
years. Most of our peers did the same. There
were exceptions: Informatics raised its initial
capital from its first 10 customers and went
public in 1966; Cullinane raised $500,000 from
Wall Street in 1968, the same year ADR went
public. Most stayed private and cash strapped
until the 1980s when software was something
the public had heard of, leading to a rash of
public offerings.

Services versus software

Our colleagues selling services found the
going easier. Because professional services are
not cash intensive, our colleagues could bill as
they worked. Software, however, is capital
intensive, requiring up-front investments in
research and development, marketing, and sup-
port. There was little overlap or similarity
between the service and software firms,
although some of us did both (mainly to pay
the bills). Software customers wanted trials,
return periods, and monthly payment plans.
With no financing for startups, no venture
money, no loans, no contract financing—not
even receivables factoring—there were only
two sources of funding: from personal resources
and from sales. This made every sale crucial,
heightened the competition, and ensured that
the principals would be in the fray each and
every time. We saw each other across the table
often, got to know each other—perhaps a bit
like Wyatt Earp knew Billy the Kid—and got to

—————————————
The lesson | learned, which
cannot be stressed enough,
was to be a gatherer, not a
hunter. One-time sales are

thrilling, but you must make

more and more to keep your
revenues rising.

respect what the other entrepreneurs did well,
whether that be sales, marketing, distribution,
or simply building good stuff.

Key/Master and Docu/Master

In the early 1970s, our strategy was growth,
to be accomplished by surrounding Task/
Master with online applications that leveraged
Task/Master’s features. The first such product,
called Key/Master, was introduced in 1974. One
of our Task/Master customers, Chrysler, had
developed a data entry program to replace key-
punches and key-to-tape machines that let
operators enter forms rapidly, directly into the
mainframe computer. Their application kept
track of operator statistics, let key portions of
documents be re-keyed to assure accuracy, and
included some check digits, control totals, and
other means of monitoring quality. This looked
to us like an application that we could sell
widely, so I paid a visit to Benny Lin, the
Chrysler data processing manager, in 1972. For
$10,000 and a guarantee that Chrysler would
have the use forever of whatever derivative
product we produced, he sold the rights to me.

It took us two years, several hundred thou-
sand dollars, and a complete rewrite to build
the first Key/Master from the Chrysler idea, but
when we launched it, the market was receptive.
Online applications were becoming wide-
spread, and the multistep processing, varying
standards, and inaccuracies of other key entry
systems yielded to the online lookups, imme-
diate availability of the data, and other niceties
that we built into Key/Master.

Many of the applications that data process-
ing departments implemented in those early
days of online systems were glorified data cap-
ture programs—enter an order and look up
inventory, for example. We added user exits
where unique routines could be added to

October-December 2004 55

56

Recollection of Software’s Early Days (1960-1979)

My prior experience selling
to Americans screamed for
an aggressive attack on the
market, but my insensibility
to the English class system
and culture slowed me
down initially.

Key/Master, and a number of our customers
built complete applications using the product.
Because it ran under Task/Master, migrating
these customers from a simple capture-and-dis-
play application to true online processing was
a logical upgrade path and source of revenue
for us. Key/Master was subsequently interfaced
to CICS, and when we finally abandoned
Task/Master, our Key/Master revenues contin-
ued to grow. Many think that basic keypunch-
ing died years ago, but that’s not the case.
When TSI, then renamed Mercator Software,
was absorbed into Ascential Software in 2003,
Key/Master revenues were still close to their
level of 10 years earlier.

In 1975, we added Docu/Master to the TSI
repertoire. A friend from Sweden, Martin
Leimdorfer, ran a company called Industri-
Matematik. IM was in the logistics business, but
as a sideline, the ever-peripatetic Martin had
acquired and packaged a full-text storage-and-
retrieval system he called IM-DOC. This was
out of IM’s mainstream, so he agreed to sell it
to us for future royalties. We saw it as a logical
extension to Task/Master and as a better way to
compete with our peers who were moving from
database management into communications.
We decided to go the other way, but to focus on
unstructured data.

IM-DOC—which we renamed Docu/Master—
needed reprogramming and repackaging to
become a software product, but it too was an
instant success on launch, giving us a good set of
applications with substance. Unlike a structured
database system, Docu/Master produced a full
inverted list of all the words in a document, minus
a list of “stop words” of no use in retrieval (such as
“and,” “the,” and so on). This let users structure
queries on the fly—such as asking for “white” and
“house” adjoining and in that order, with
“Washington” or “President” also somewhere in

IEEE Annals of the History of Computing

the document (to avoid finding articles on how to
paint your house white). For large text databases,
like the New York Times morgue files, this became a
powerful application. With Task/Master and
Key/Master, Docu/Master gave us a third arrow in
our quiver. For this reason, in 1978 we could afford
to write off new sales of Task/Master, roughly 20
percent of our business, using the Task/Master
maintenance and lease stream and the sales
growth of our other products to take up the slack.

Distribution, and my days as a Brit

By the mid-1970s, following the introduc-
tion of new products, Turnkey Systems decid-
ed that the time had come to make our
network of distributors in Europe into a profit
producer. Up to that time, the cost of provid-
ing US-based support personnel to European
distributors had consumed all the profits, so
what we gained was volume only. Volume was
good, because it let us afford more R&D, but we
wanted to make some money, and thus far had
made almost nothing in eight years of trying.
Yes, we had a nice and growing business, but
everything was reinvested, so—no profits.

Distributor economics

Our distributors were mainly small inde-
pendent businesses that were still experiment-
ing with software sales. It was pretty standard
in those days to split the sale price with the dis-
tributor. We took 50 percent without giving
much in the way of sales or technical support—
that was paid for out of the distributor’s half, as
was translation of materials, local marketing,
and so forth. This formula was destined for fail-
ure from the start, although none of the soft-
ware companies knew it at the time.

Later, we learned that sales cost roughly 25
percent of a typical selling price; marketing, 15
percent; and customer support, 20 percent. In
short, in a 50/50 deal, each sale properly made
and serviced would lose the distributor 10 per-
cent of the sales price. Later, the split changed
to 60-66 percent for the distributor, letting
both parties make some money. But even more
important, it became clear that decentraliza-
tion of marketing and customer support to the
lowest level made the pie too small to share
profitably at any level. My solution was to cre-
ate an interim level of support to do “template”
marketing and to provide second-level techni-
cal support and training through a TSI-owned
office near our European distributors.

Setting up a European base
The plan was for me to move to London to
set up a technical and business support center,

to promote Dennis Sisco to run software prod-
ucts operations in the US, and for Tod Pontius
to turn the professional services side of the
business into a national presence, with profits
everywhere. It didn't turn out that way, but my
move to London was fun, educational, and
challenging.

Rich Atwood had worked for TSI in the states
as a customer support manager, and he volun-
teered to join me in London, managing central
technical support for our distributors. Our
English distributor, Hoskyns Systems, was exit-
ing the software business so we had a territory
of our own to support as well, something that
could serve as a model for future remote offices.

My prior experience selling to Americans
screamed for an aggressive attack on the mar-
ket, but my insensibility to English culture and
to the English class system slowed me down
initially. One of the first things 1 did was use
modern word processing techniques and a
database [took great pains to build—both of
which were rarities in 1975—to write personal
letters to every data processing manager in the
UK. I introduced myself and invited each one
personally to a seminar intended to introduce
our products to the UK market. Result? Not a
single reply. In the US, we expected a 5 to 10
percent reply rate to the first of such mailings.

What to do? I conferred with a few people,
who assured me that the English were so class
conscious that they would never reply to a sales
invitation, assuming it was beneath their sta-
tion to attend something so crass. So [tried
having engraved wedding-like invitations
made, complete with a filmy overlay on which
was listed the agenda, and a small, engraved,
reply card. The card invited them to an invita-
tion-only seminar on new American technolo-
gies to be held at the Inn on the Park, complete
with a gourmet luncheon and featured speak-
ers (me included). A £25 fee was requested, by
check, “to defray the cost of materials prepared
for, and to become the property of, each
attendee.” A reply on or before a certain date
was requested as well. The same 660 people I
had previously contacted now received these
pretentious invitations, and this time more
than 200 responded, with checks!

We had to turn away all but 40 people for
the first seminar, which only increased the
seminars’ appeal, and eventually we enter-
tained more than half of the buying managers
in the UK. Because it was held for senior data
processing managers only (we refused any and
all substitutes), the exchanges over lunch were
peer-to-peer, enhancing the attendees’ good
tfeelings about having come. Our sales pitch

was in the clouds, describing the benefits of
multitasking communication protocols, termi-
nal independence in software construction,
and the relative benefits of various software
strategies. No uncouth “buy our product”
pitches. The approach worked beyond my
wildest hopes. In the first year 1 sold more than
$1 million of software in the UK.

However, our distributors’ financial state
was still precarious. They were losing money on
every sale, and we didn’t have the financial
strength to support them. In fact, we pressured
them for payment almost on shipment, and
they pled that they could not collect quickly
due to trial periods, demonstrations, and long
collection cycles. All true—in Europe, it wasn’t
unusual for the day’s sales outstanding®® to
exceed 150 days, versus under 90 in the US, so
our expectations were different.

My return to a company in turmoil

When 1 returned to the US, at the end of
1975, the business was in turmoil. Tod had
taken a project in Florida at MSCU, a Tampa-
based credit union, and his (then hidden) goal
was to use this project to create an application
software product for credit unions. His original
bid to create a complete online, secure system
for all the credit unions in the consortium had
been $105,000. My questioning of this—prior
to my having left for London—had been, in
retrospect, cursory. | was assured that it was a
time-and-materials contract; that the quote was
an estimate, not a fixed fee or an upset price (a
price at which you renegotiate); and that every-
one was happy.

Shortly before my return to the US, 1 dis-
covered that the client was pressuring for com-
pletion and was balking at paying more than
the $105,000 (although had agreed to an add-
on at another $20,000). 1 asked Tod and his
project manager, Elaine Diefenderfer, if they
couldn’t pull the time-tested “change of scope”
renegotiation, and the truth all came tumbling
out. We were indeed working against a fixed
fee, the client had already refused several times
to pay a penny more, and Tod and Elaine were
continuing to pay their team of seven despite
having no funds and no way to divert these
tolks to other projects without the risk of being
sued. Tod said that at this stage the only option
was to finish the project and end up with a
product we could sell to others, so we just had
to hunker down. That meant taking the mea-
ger profits from our software business and
plowing them into the as-yet-undeveloped
MSCU software, something 1 might have con-
sidered under other circumstances.

October-December 2004

57

58

Recollection of Software’s Early Days (1960-1979)

1 had built a profitable, rapidly growing soft-
ware products business and did not want to see
it fail. Tod refused to simply walk away from
the MSCU project, so we were at an impasse. |
called our lawyer, Woody Knight, one of the
best attorneys [ever met, who over lunch sug-
gested that the only course of action would be
for one of us to buy out the other. 1 offered Tod
a sum that seemed immense at the time,
$500,000 as I recall, to be paid over many years,
and asked him to counter-offer. He folded, and
Woody drew up the papers.

And so our partnership ended. I was now
the CEO, formerly Tod’s titular position. My
first task, which might have rendered the com-
pany’s debt to Tod worthless, was to visit Jim
Berryhill, the head of MSCU, to tell him we
could not finish the project for the fee negoti-
ated. I requested a meeting with his full board
of governors, representing the heads of all his
member credit unions. Over dinner the night
before, 1 gave Jim, whom 1 had never met
before, the bad news. If we were to try to finish
the project for the committed amount, we'd go
bankrupt before we got there, taking a prof-
itable software products business down with it.
However, there wasn’t enough margin in the
software products side of the business to make
continuing worthwhile without a renegotia-
tion, so if they insisted that a “contract is a con-
tract” we would simply fold our tent. On the
other hand, I was willing to continue at cost
and if we did manage to finish and could sell
copies of the software to others, we could make
up the difference in royalties.

Renegotiation versus bankruptcy

The next day, [waited in MSCU'’s lobby for
hours while the board convened. I could hear
occasional sounds of heated conversation, but
no words. At length, I was invited in and 1
repeated the pitch; go to time-and-materials at
cost going forward, build a real software prod-
uct, and maybe get back royalties—or sue us
and we will file for Chapter 7 bankruptcy. One
of the managers said he didn’t believe me: that
I wouldn't throw away the whole company over
one customer. I said that between an unknown
liability and the $500,000 owed to Tod, if we
continued 'd rather write off the nine years and
start over, but that if they would work with me
1I'd try to keep the remaining costs to a mini-
mum and do my best to make the software
resalable. I think the success that I had had with
other products helped sway them, for in the
end we tore up the fixed fee agreement, and our
people continued on the project, at cost.

It took us another $125,000 and almost a

IEEE Annals of the History of Computing

year under this arrangement to finish a prod-
uct we called the Automated Information
Management System (and styled, with aster-
isks, as A*I*M*S), and in the teeth of a recession
we ftried to sell it to other credit unions. 1
learned a lot about application products in the
exercise, but never sold a single copy. The mar-
ket was simply not ready for us; had we been
willing to hang in I think we could have made
a success of it, but by that time MSCU and its
member credit unions were very happy cus-
tomers and there was minimal pressure on us
to continue. It was now 1978, and I had other
opportunities and problems, so we put A*[*M*S$
on the back burner, for a while we thought.

Mutiny

While I had been in London, Dennis Sisco
had been running the North American soft-
ware products operation, and | let that contin-
ue while I worked on the MSCU problem.
Dennis, still a good friend, was (and is) an
intense, no-nonsense guy. At that time (1975),
the managers of sales, marketing, development,
and customer service all worked for Dennis. As
one, they all mutinied—Leslie Kelley, Joe
Farrelly, Bob Bouton, and Bill Clifford, all of
whom went on to bigger and better careers
after they left Turnkey Systems.!” 1 knew the
problem was because of Dennis’ relative youth
and his unbending management style. I had no
doubt that had I backed him and had we been
financially sound we would have come out of
it better than we went in. However, the rest of
the team were pretty good at their jobs, and the
idea that sales, marketing, development, and
customer service would be leaderless was
daunting. Especially since our bank account
was near zero thanks to the MSCU debacle and
paying off Tod. One of my hard-learned lessons
is that a manager will never regret making a
personnel change once it’s clear that a person
can’t be managed, mentored, or educated to do
what they were hired to do. Dennis, however,
was a special case who I strongly felt should be
saved for the company if at all possible.

I decided to remove Dennis from opera-
tions, expecting he might quit on the spot. |
restated my confidence in him, told him that
this would be a great learning experience, and
offered him a new job, as vice president of cor-
porate development with the express goal of
finding us a merger partner. By then I had pret-
ty much concluded that we were late in the
consolidating cycle of software companies and
that our best bet was to join someone with
deeper pockets. Surprisingly, and to his credit,
Dennis accepted.

Selling the company

Our board of directors at the time consisted
of Dennis, Leslie, me, and two outsiders:
Stewart Greenfield and Dave Fehr. Stew had
started the Citicorp Sprout funds and was by
then a well-known venture capitalist. He was
trying to raise $25 million for a new fund, Oak
Investment Partners, but the tough financial
times had him cooling his heels. Although Oak
subsequently became a series of multibillion
dollar funds, the first $25 million took forever
to raise, so we had the benefit of Stew’s counsel
for several years. Dave was a VP at National
CSS, a successful time-sharing concern that had
built its entire business around IBM’s large
computers (initially the IBM 360/67) running
under an operating system that created “virtu-
al machines” in time-sliced chunks.!® National
CSS had taken IBM's VM operating system and
extended it in proprietary ways, creating
VP/CSS. This let their clients share computing
power across phone lines with reasonable effi-
ciency if at great cost (the PC would destroy
this business). I had invited Bob Weissman,!?
National CSS’s CEO to join our board, but he
pled time constraints and offered Dave.
National CSS was interested in turning VP/CSS
into a software product, so it seemed like a
good learning opportunity for Dave.

In any event, Dennis briefed the board on
his new charter and they fully supported the
idea of finding a merger or acquisition partner.
We didn't share any of this with the rest of the
senior management team, and Dennis’
estrangement from them helped keep inadver-
tent disclosure out of the picture. In the mean-
time, Dave Fehr told me that National CSS
might be an interested acquirer, and that if we
were interested, he would recuse himself and
get someone else to do the analysis and, if
appropriate, the negotiations.

National CSS had lots of attractions. First
they were a local firm—we were in Norwalk
and they were in neighboring Wilton,
Connecticut. Second, they wanted a foot in the
software products marketplace, where we were
firmly established with worldwide distribution.
Third, they had a large client base consisting
mainly of corporate users, and the supposition
was that Turnkey Systems could mine this
prospect list. Fourth, they had a time-sharing
service that we had tried and wanted, but could
not afford.?® Last, they were a cash-rich publicly
traded company.

Dennis was a star in his new role. He made
Turnkey Systems look like something precious,
something not to be lost to competition, some-
thing worth its weight in gold. Bob Weissman

had recruited Bernie Goldstein to National CSS
as chairman, and Bernie became their negotia-
tor. A legendary deal doer, Bernie had amassed
a personal fortune by acquiring data centers
under the United Data Center umbrella, and—
having sold United—was between successes.
Dennis and Bernie were a real duo: Dennis, pro-
fessionally nearly humoitless, incredibly smart,
as determined as a bulldog, and Bernie, wily, an
actor’s actor, and experienced in deal-doing
beyond compare.

Acquired by NCSS

In the end we got a very good deal, a share-
for-share swap of Turnkey stock for National
CSS stock at $24 per share, the current NASD
market valuation for National CSS. The deal
was agreed to in December of 1978 and closed
in February of 1979. I became president of the
Software Products Group, a new role, reporting
to Bob, with the goal of rapidly building our
product line by internal growth and acquisi-
tion. Dennis went to work for Bernie in corpo-
rate development. I became a member of the
executive committee, something Bob agreed to
but promptly forgot.

Acquired by Dun & Bradstreet

In spring 1979, Dun & Bradstreet decided to
acquire a time-sharing company. George
Feeney, who had come to D&B as a VP in
charge of technology, had previously started
GE time-sharing, and he believed that time-
sharing was the future of computing for corpo-
rations. He desperately wanted to acquire the
biggest company in the business, Tymshare
Inc., a public company several times the size of
National CSS. Tymshare’s CEQ, Tom O’Rourke,
rebuffed D&B’s advances and fell into the arms
of McDonnell Douglas, so George turned his
eye to the number 2 player, National CSS. All
of this happened immediately after our acqui-
sition, so close in fact that to this day there are
people who believe that I, or at least Bob
Weissman, knew that a deal was in the works.
Bob assures me this wasn't true, and I can attest
that on a flight back from somewhere with Bob
a few days before our deal closed in February, 1
asked him point blank if there was anything at
all, even something that need not be disclosed
for immateriality, that was in the works that I
should know of, and he said “No.”

I had followed the Tymshare dance in the
press so [wasn'’t unaware that D&B was on the
prowl. When 1 got a call in May on a Sunday
evening from Bob I was surprised but jumped
quickly to a few speculative conclusions.
Apologetically, Bob said, “Lee, I am so sorry. I for-

October-December 2004

59

60

Recollection of Software’s Early Days (1960-1979)

got you completely. We're over in the conference
room having an Executive Committee meeting,
and I think you should get here if you can.”

| got there, and when the elevator doors
opened on the executive suite level, Bob was
there to greet me. “We have heavy stuff to dis-
cuss,” he said.

“Let me guess,” | replied, “D&B has made us
an offer.”

“And do you know the price?” Bob asked.

“$48 per share,” I said, taking a wild guess
that a 100 percent premium would ensure that
no other bidder would snatch this one away.

So Bob escorted me into the meeting and
announced to the assemblage: “Lee just arrived,
and told me that D&B has made an offer for
NCSS at $48 per share. Either he is clairvoyant
or our cover is blown.”

Once everyone got over the shock of my
educated but deadly accurate guess, we debat-
ed the merits of $48 cash for a $24 stock, quick-
ly concluded that our fiduciary duty to
shareholders demanded a Yes, and the deal was
quickly consummated.

Turnkey Systems shareholders received
instant liquidity for their shares, at double the
negotiated sale price. I received many happy
phone calls hailing my praises and insisting
that I was a Machiavellian genius who had
known well in advance of our sale to NCSS that
D&B was going to buy the whole thing.

End of Part 1. Part 2 will feature Life at Dun
& Bradstreet; the role of ADAPSO in the early
software industry; and afterlife.

References and notes

1. Luanne Johnson is president of the Charles Bab-
bage Foundation.

2. Mercator, the product sold today, is a modern
object-oriented interpreter of real-time data
streams that lets its users link legacy and modern
systems with a seamless interface. This product
was developed by a company that could trace its
lineage directly back to the early Turnkey Systems.

3. We had to account for this as compensation, tax-
able to the employee, but we “grossed up” the
payments so the family travel was at zero cost to
the employee.

4. Ayear and a half later, Jerry’s impetuousness got
him fired, and Burndy hired Turnkey Systems to
provide an interim VP of data processing: me. | did
this job for almost six months, with good second-
level people who saved my bacon and who were
relieved to be away from Jerry’s bombast. 1 hired
my replacement—which was my main job at
Burndy—who immediately cancelled all contracts
with Turnkey Systems and proceeded to make rad-

IEEE Annals of the History of Computing

6.

10.

ical changes to the systems architecture that Jerry
had built. I'd like to think that by hiring a strong,
independent guy we did Burndy a service at our
own expense, but the “tear it down” approach
seldom fixes problems, and despite later successes
| don’t think that his approach improved Burndy’s
systems. As a postscript, Jerry Kaufman left data
processing altogether and became a psychologist.

. Sending the data and its formatting characteris-

tics as separate data elements is now accepted
practice. HTML, XML, and other markup
languages are based on this concept, but in 1969
it was reasonably innovative.

Also see Larry Welke’s anecdote in the /EEE Annals
of the History of Computing, vol. 24, no. 1,
jan.—Mar. 2002, pp. 85-89.

. Before the System/360, IBM's products ran only

batch jobs. Because the processor ran so much
faster than the peripheral devices, most of the
time the processor was in a wait state. Multitask-
ing, however, enabled the devices’ relatively slow
processes to overlap. Consequently, with
sufficient memory, enough programs could be
run to ensure that the wait state was minimized,
which meant that this expensive mainframe com-
puter was optimized.

. The original team consisted of Steve Ward, Dennis

Sisco, Joe Farrelly, and me. In 1971, Bill Zack
joined the team briefly, but in the main the design
and implementation of Task/Master was the work
of the original four. As my programming skills
became known by the others, | was relegated to
developing the user interface modules. In my
“break down the door” manner | got the job
done, but the programming was ugly.

. It remains unique. Its source code is on file at the

Charles Babbage Institute, and the source code is
as self-documenting and readable today as it was
35 years ago.

If we consider one-off projects and system
software developed under contract to the hard-
ware manufacturers, the industry dates from the
mid-1950s. Computer Usage Corporation (CUC),
founded in 1955 by Elmer Kubie and John W.
Sheldon, wrote a program for California Research
Corporation to simulate oil flow. Fletcher Jones
and Roy Nutt founded Computer Sciences Corpo-
ration in 1956 to develop systems software such
as compilers. Simscript, a simulation language
developed by California Analysis Centers Inc.
(CACl) was launched in 1962, and the ADPAC
compiler appeared for direct sale in 1964. Marty
Goetz claims that the true software products
industry started with Applied Data Research’s Aut-
oflow launch in 1965. Historians will have to sort
this out, but it appears that there were no compa-
nies mass-marketing software packages directly to
end users until the early 1960s, and no real

11.

12.

13.

“industry” until a decade later.

As noted, Task/Master’s source was Cobol, and
we distributed this along with Steve Ward’s
Genesys code-modifying software utility, another
unique product Turnkey Systems developed.
Cenesys produced custom Cobol, unique to the
customer’s parameters, from a master source list-
ing. This output was then compiled, giving each
customer a unique system but from a common
master source listing. If they wished, customers
could modify their unique Genesys output. So
long as these modifications were made in sepa-
rate linkage modules, they could maintain
custom systems across many new releases.

Marty Goetz, a former Sperry-Univac
programmer, was a founder (in 1959) and later
president of Applied Data Research, or ADR, one
of the first software products companies. ADR’s
first product (Autoflow, a computerized
flowcharting system) was launched in 1965.
Marty later sued IBM for attempting to monopo-
lize the software industry and in 1970 won a $2
million out-of-court settlement. The settlement
helped ADR grow and become listed on the New
York Stock Exchange. Years later his daughter,
now grown and a lawyer, sued IBM on behalf of a
medical company Marty had helped found, and
won again. | think Marty may be the only person
to have successfully sued IBM twice and won both
times, using the proceeds to build successful com-
panies. See also M. Goetz, “Memoirs of a
Software Pioneer: Part 1,” IEEE Annals of the Histo-
ry of Computing, vol. 24, no. 1, Jan.-Mar. 2002,
pp. 43-56, and M. Goetz, “Memoirs of a Software
Pioneer: Part 2,” IEEE Annals of the History of Com-
puting, vol. 24, no. 4, Oct.-Dec. 2002, pp. 14-31.
in 1992, | was riding a train from Westport, Con-
necticut, to New York City. | was reading my
newspaper and heard the two men sitting oppo-
site me say “Task/Master” so | put down my
paper, interrupted them, and introduced myself.
It turned out that they were from American
Brands, one of our earliest users. They were
lamenting the fact that their management had
decided to abandon Task/Master. This was 14
years after we had discontinued any new devel-
opment or sold a new customer site. If there is a
lesson in this, it is that software has a much
longer useful life than almost anybody, including
us professionals in the field, will ever believe.

. We never sold the software, we wrote a perpetual

use license. This eliminated the monthly lease or
license fee but substituted an optional annual
“maintenance” fee, in reality the continuing right
to enhancements and bug fixes.

. The original Graphics product was priced at

$15,000, the first Task/Master at $18,000, but
over time this price increased steadily. It was close

to $40,000 when we discontinued it in 1978.

16. The day’s sales outstanding, or the amount of
accounts receivable, was expressed as a number
of days of average sales.

17. Only Bob, after a few years away, stayed at TSI and
worked in the successor company. Leslie went to
Rolm as a senior development manager, Joe went
first to ADP as vice president of research and
development, then to RJR Nabisco and Seagrams
as CTO, and Bill became CEO of Gartner Group.

18. An interesting side note is that back in my IBM
days | had been asked to evaluate the then
brand-new National CSS as a credit risk for its
purchase of two IBM System 360/67’s, a huge
order. | met the founders, heard their business
plans, and concluded that they would not last six
months, which | reported back to IBM—thus
almost making my prophesy come true.

19. See R. Weissman, “CCITT Meeting Recommenda-
tions,” IEEE Annals of the History of Computing,
vol. 24, no. 4, Oct.-Dec. 2002, pp. 43-43.

20. We had long before installed a National CSS ter-
minal (a converted Selectric typewriter that IBM
called the 2740) to let our people write Cobol
programs interactively. The system improved
productivity, but our customers would not pay
for it, and we could not afford the monthly
charges, which frequently ran into thousands of
dollars. Also, the system was so slow that Hal
Feinberg, one of the VP/CSS developers, added a
“tic” that made the Selectric ball spin occasional-
ly, just to let the users think the system was work-
ing and not asleep.

Emnest E. “Lee” Keet, cofounder
of Turnkey Systems in 1967, is
president of a private equity
firm, Vanguard Atlantic Ltd.
Before founding Vanguard
Atlantic in 1985, he was presi-
dent of the Software Products
Group at Dun & Bradstreet. He
holds a combined BS and MS degree in mechanical
engineering from Cornell University and an MS in
operations research from New York University. He cur-
rently sits on a number of boards, including the
Trudeau Institute and the Charles Babbage
Foundation. He resides with his wife in New York, San
Francisco, and Paris, with a permanent address in
Saranac Lake, New York.

Readers may contact Lee Keet about this article at
62 Moir Rd., Box 1199, Saranac Lake, NY 12983;
Lee@VanguardAtlantic.com.

For further information on this or any other com-
puting topic, please visit our Digital Library at
http://www.computer.org/publications/dlib.

October-December 2004

61

